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RECENT RESULTS IN THE THEORY OF THE THREE-NUCLEON SYSTEMS

J. L Friar
Theoretical Division
Los Alamos National Laboratory
Los Alamos, NM 87545 USA

INTRODUCTION

The few-nucleon problem plays a comparable role in nuclear physics to the few-
electron problem in atomic physics. The relative simplicity of treating the
interactions of only a few bodies allows us to solve the Schrodinger equation with a
much greater degree of accuracy than we can attain for the case of many bodies.
Precise measurements and accurate calculational techniques for H-like and He-like
ions permit fine details in those atomic spectra (such us the Lamb shift) to be
studied. Recently, for example, the Lamb shift in He-like Uranium was measured/l/
for the first time. The interpretation of this result relies upon detailed and
precise calculations of the energy levels of that system.

While nuclear physics experiments and calculations are rarely as precise as
those of atomic physics, considerable progress has been made and continues to be
made in our understanding of the few-nucleon systems, which are the testing ground
for new ideas and mechanisms in nuclear physics. Much of thi~ nrogress stems from
improved calculational abilities, which has led in turn to consideration of
interesting (but relatively small) physical mechanisms contributing to the
propertias of the trinucleons (and other nuclei). Before treating in detail such
phenorana as meson-exchange currents, relactivistic corrections, three-body forces,
and subnuclear degrees of fireedom, one must have control over the basic process of
calcuiating Schrodinger eigenvalues and eigenfunctions. This control seems now to
be largely in hand, at least for the trinucleon bound states.

Few-nucleon physics is such a rich and diverse fiald that only a small subset
of toplcs can be reviawed hare. OUther rasults and topics will be stressed by other
speakers. I will concentrate on calculational results obtained by the Los Alamos-
lowa Faddeav group/z/ (LAFG) and on related calculatiosns. Most of our interest haw
centered on the He and ’H ground states, including the effects of the Coulomb
interaction betveen the two protons in the former. Vary racently, a new member ot
outr group (Joe Carlson) has made some exciting progress in treating the alpha

13/

particle [ will also discuss zero-energy n-d and p-d scattaring and our

{mproved understanding nf the scattering lengths for these systems. In addition o



detailing results of our calculations I will attempt to provide simple physical

pictures for these results. where possible.

CALCULATIONAL TECHNIQUES
A wide variety of ca'culational techniques exist for solving the Schrodinger

equation, including the Raleigh-Ritz variational cechnique/3'7/, the hyperspherical

harmonic expansion/s'g/, the Green’'s function Monte Carlo method (GFHC)/7'10/.

/11-13/

and
the Faddeev procedure’ All of these have been used for the trinucleon bound
states and for the a-particle. The august variational technique provides a rigorous
upper bound for the energy, but does not generate a wave function whose quality
matches that bound. Morz2over, it is often not applied in a constructive manner:
that 13, it is not always clear how to systematically improve the wave function in
order to lower the energy. For simple potentials, those without spin and isospin
dependence (i.e., ldentical central forces for all nucleons), this technique :an be
extremely effective. This remark applies to all of the above mentioned methods/a/.
The introduction of spin-dependence in general, and a strong tensor force in
particular, can significantly alter the convergence properties of the first three
methods, which must be evaluated on a case by case basis. Nevertheless, their
{mplementation for the a-particle is not much more difficult than for the triton,
which contrasts strongly with the Faddeev cppronch./la/

The GFMC method is an old techniquo/lo/ which is enjoying a relurgence/3'7/: le
is “exact" in principle within the Monta Carlo sampling errors. The "wave function"
generated by this procedure is a random sanple of points over the nuclear Hilbert
space, which can be viewed as the representation of the exact wave functiun by a set
of §-functions. The Schrodinger equation in (imaginary) time, r, is integrated
forward with small time steps trom an initial sample, an. components of excited
state wave functions (eneargy, En) decay exponentially with increasing time
[-exp(-(En-Eo)r)], leaving only the ground state component with energy Eo This
procedure converges to the loweast energy state of the Hamiltonlan jrraspective of
the symmetry of that state under particle interchange. The general presumptinn is
that (for Fermione) the totally symmetric state, rather than the totally
antisymmetric state, lies lowest in energy, because Pauli Principle constraints
increase the wave function complexity By projecting ths Monte Carlo distribution
of §.-functions on a totally antisymmetric trial function, this problem vanishes "in
the mean”; unfortunately this trick does not control the varlance, vheraby the
"nolse” In the energy dlscribution can grow uncontrollably and aventually will swamp
the signal as one goes forward in time.

Recently, it has been found that In the A=1 and 4 systems (only), the totaily
symmetric ground states lLie higner in energy than the antisymmetric ones and hence
do not hinder the convergence. This unexpected resulc is simple to understand, [t

ve note that i{sospin L9 the degree of f:reedom which adjusts ltself te¢ accommodate



the symmetry, because the angular momentum barrier selects tha S-waves (and tensor-

coupled D-waves) as the dominant partial waves. In the symmetric channels, the 150

partial wave has T=0 while 3S1 has T=1, and the dominant long-range OPEP becomes
repulsive. Other components of the force also be-ome repulsive. At the present
time only che Argonne V6 putential/ls/ has been treated (central plus tensor forces,
but no spin-orbit interaction or other angular-momentum dependence). Both the
triton and a-particle problems have been solved, the former agreeing with the
corresponding Faddeev calculations. Incorporation of the spin-orbit force is in
progress. This technique has the potential to become the method of choice for
solving the few-nucleon bound-state problems.

One of the problems which has faced our field until fairly recently has been
the lack of benchmark calculations against which calculational procedures can be
compared and chaecked. This situation has been alleviated by a number of very
accurate Faddeev calculations for the tricon/16'13/.

originates in the seminal wvork of L. D. Faddeev/lll, who developed the method

The latter technique

whereby scattering boundary conditions for three particles (as originally
implemented for local potentials by Malfliet and Tjon/lg/) could be properly
{mplemencted. It also provides an excellent procedure for solving for the bound
states of three nucleons, although the asymptotic boundary conditions are not in
doubt in that case (i{.s., the wavefunction must vanish). Faddeev's original

presentation and most of the subsequent bound state calcilations were performed in

/137 /18/

momentum space The Sendail group works in a mixed momentum-configuration

space representation, while the Grenoblo-(Hontronl/zo/-Loningrnd/21/) and Los
/2/

Alamos-Iowa groups wo~k in configuration space. The latter representation

provides a natural way to anorporncc/21'22/

‘He.

the pp Coulomb interaction into *He and

The Faddeev method is traditionally implemented in a way which takes advantage
of the angular momentum barrier for the lousely bound trinucleons. The nucleon-
nucleon (NN) force is decomposed into an infinite number of (non-local, partial-
wave) channels, each of which is nonvanishing only i{n a specific NN partial wave
(e.g., 1So). This force is then truncited to a finite number of channels for the
interacting pair (coupled to the remaining spectator nucleon) and the Faddeev
equation, completely equivalent to the Schrodinger equation, is solved "exactly" for
the truncated problem. Higher orbital partial waves are suppressed geometrically by
the angular T;ncn:un barrier and the procedure converges rapidly. The original
/19/
angular momentum Jsl), and has progressed to 18717/ (J<2) and recently to l4
716,18/ (Jsa), Concrlbutlonl/za/ to the Argonno/ls/ Vl
are (-13.763, -3}9.082, -0.377, -0.103), -0.015, -0.0064, -0.0013, -0,0008, -0.0002!
MeV for J = 0 +8, while a kinetic energy of 45.670 MeV leads to a total energy of -

calculation used 5 channels (all posicive-parity NN partial wvaves with toral

channels 4 potential energy

7.6/8 MeV., The point Ls that one should not compare small-basis Faddeev

calculations with other techniaues which automaticallv assume all NN partial waves
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TWG-BODY AND THREE-BODY FORCES
Tricon calculations have been performed for a number of "realistic" NN
interactions: Reid Soft Core/za/ (RSC) [-7.36 MeV], the Argonne /15/ V14 (AV14)
[-7.68 MeV], Super Soft Core/zs/ (C) [-7.53 MeV], de Tourreil-Rouben-Sprung/26/ (B)
/27/ /28/ /29/
[-7.57 MeV], Parlis [-7.64 MeV) and Bonn [-8.33 MeV] . All are 34-channel

/16,18/ 730,31/ are roughly 1 MeV

resulcs , and with the exception 5f the Bonn result
too low. See also Ref. 17 and 31.

The latter potential has 2 significant features which presumably play some role
in the increased biniding. One feature of uncertailn quantitative importance is the
fact that the configuration space version of the most recent Bonn potential, like
the Paris potential, has momentum-dependent components of the form (Ez,V), where E
1s the relative two-body momentum. Such terms were neglected in almost all of the
older semiphenomenological poceg;ials, but they arise naturally/32/ and are {n fact
/

raquired by spacial relativity The second feature ls the wveaker tensor force
in the various Bonr pocencials/za/ (there are many such potentlials with disparate
forms and ages). It has been known for several decades that weakening the tensor
force increases the triton binding energy. The reason is that although the triton
binding is very sensitive to the tensor force, the deuteron is even more so.
Congsequancly, the obvious requirement for any potential that the deuteron have the
correct binding energy leads, upon weakening the tensor force, to a significauctly
enhanced central force, which is more effective in the triton than the deuteron and
thus increases the triton binding. Typical (but clearly unphysical) potential
models without a tensor force overbind the criton.

The third feature which is salient is the fact that the potentials which are
fitted solely to np scattering data are stronger than those fit also to pp data.
The T=0 partial waves are determined solely by np data, but charge dependence of the
force makes T=1 partial wavas diffar for the np and pp (or nn) cases: the s-wave
scattering lengtha prove thil./zz/ Consequently the 150 potential for the AV14 and
Bonn potentiala, having been fif to np data, are stronger than those fit to pp data,.
Recently/3a/ ve showed that {f the tiny isoquartet (T=3/2) component of the
trinucleon wave function produced by this charge dependence has a negligible effect,
the appropriate T=1 NN force for use in the triton (assuming charge symmetry) lis
given simply by (2Vpp/3 + Vnp/J). Qualitatively this results from the 3 NN pairs in
the triton being roughly 3/2 T=0 pairs and 3/2 T=1 palirs; there is one nn or pp pair
(T=1), while each of the np pairs has a 3/4 T=0 (S=1) and 1/4 T=1 (S=0) welighting.
Thus the force for the like particles (nn or pp) comes in with twice the weight of
the unlike particles. The amount by wnich using Vnp increases the binding over the
"2/3-1/3 rule" given above |s a model-depsndent quection, but simple estimates
suggest that each "third" of a potential changes the binding energy by roughly 100
keV. Thus, using the 2/3-1/3 rule could reduce binding for np-fltted potentlals by
as much as .2 MaV and increase the binding for pp-fitted potentials by .1 MeV.



The quantitative reason why the recent Bonn potentials produce significantly

/29-30/  4a fundamental

more binding is under investigation by several groups
question must be borne in mind: Are the features of the Bonn potential which
produce the addictional binding subject to simple experimental verification (i.e.,
comparison with data), or are they based largely upon theoretical prejudice?

If the triton is underbound by 1/4-1 MeV, what mechanisms could produce the

requisite additional binding? Attention has focused on relativistic corrections/Js/

733/

and three-nucleon forces These are not necessarily separate categories; it is

known that certain components of the most popular three-nucleon force models/36'37/

/16/

are of order (l/cz). It is worth remembering that the relatively small binding
energy of the triton results from the cancellation of large potential and kinetic
energies (~50 MeV). Thus 1 MeV in additional binding is only 2 percent of the total
potential energy, and relativistic corrections this large would not be unexpected.

What is a three-nucleon force? In any calculation we choose te perform, [t is
often convenient to "freeze out" certain degrees of freedom. These frozen degrees
of freedom (and sometimes other mechanisms) lead to forces which derand on the
simultaneous coordinates of three nucleons. A good example, and one which has
merited a major amount of attention, i{s the A-mediated forco/3a/. which Professor
Sauer will discuss in greater dectail. One nucleon can emit a » or , meson which
polarizes a second nucleon into a 4; *he latter (virtual) state decays and the
subsequent decay meson is absorbed by a third nucleon.

The methodology which has directed the development of the Tucsan-Holbourne/36/
(TM) and Brazilian/37/ models of this force is similar to that which led to the
Axilrod-Teller three-atom forco/sq/. The easiest t> calculate (and therefore
hopafully the most important) three-body forces are rne longeat-range ones. In
atoms tlhat force is the one caused by mutual (viitual) dipole excitations of the
electron clouds (analogous to the van der Waals mechanism). In nuclei it is the one
generated by exchange of the lightest meson, the pion. Fortunately for us this case

is greatly aided by powerful theoroms/ss/

which arise from chiral symmetry and
restrict the long-range interaction (low-momentum regima) of the plon with a
nucleon. Unfortunately, the short-range behavior is not sinilarly constrained. nor
ls the contribution from chiral-symmetiy-breaking. The latter problem can be
partially resolved by appealing to experiment (1.s., phenomenology). The biggest
problea is the uncertain pion-nucleon form factor.

Calculations by the LAFG/IG/ and Tohoku/la/ groups have ahown that the TM,
Brazilian and Urblnn-Argonn./s/ (UA) force models produce roughly 1.5 MeV additional
energy for a particular choice of the »-N form factor. Unfortunately, the results
are extremely sensitive to the range chosen for that form factor. Longer-range
choices can generate much less additional binding (less than .25 MeV); the converse
is also true. There 15 no question that threa-body forces exist and play a role (n

the triton. The amount of additional binding, however, {s problematical.



The Hajduk-Sauer model/JB/ has implicit three-nucleon forces, which arise
because they do not freeze out :he A-degrees of freedom. Rather, they incorporate
A-components Into the nuclear wave function. The HS model leads to roughly .25 MeV
additional binding. Because the HS and TM models are very different, a detalled
comparison has not yet proven possible. Professor Sauer will discuss his model in

more detail.

IRINUCLEON OBSERVASLES

Although we have detailed the significant calculational progress which has been
made recently, we still have a serious problem resolving the origin of the remaining
binding energy in the triton. Different models lead t> different results, and this
situation will remain until potential models can be ruled out because they disagree
in a significant way with data. A furcher complication is the lack of sufficient
high quality NN data which constrain the tensor force. For common potential models
this force generates more than half of the triton potential energy. This very
difficult experimental problem is now being attacked by a number of groups, and
significant progress can be expected in the next few years.

In view of this uncertainty, is there anything one can say about other
trinucleon observables, such as the rms (charge) radii, the Coulomb energy of 3He,
and the s- and d-wave agsymptotic normalization constants, the N-d scattering
lengths, and the electromagnetic form factors of the trinucleons. Fortunately, the

answer {s (a qualified) yes/ho/.

Unless our understanding of the trinucleon binding
i{s in serious erroar, many of these observables depend primarily on the binding
energy, rather than on details of how the binding is obtained. This should not be
too surprising, since the deuteron is a classic example of a weakly bound systen,
many of whose properties depend on this weak binding and on the nature of OPEP/QL/.
the longest-range component of cﬁe NN force and a dominant element of the NN tensor
force. Obviously all realistic force models contain OPEP. One immediate result is
that the triton D-state probability should be 3/2 times the corresponding deuteron
probability. This relationship works well/ao/ and results from 3/2 T=0 pairs Iin the
triton.

If we plot the value of an obsarvable varsus the triton binding energy. EB' for
a variety of model calculations, the results in many cases show a clear depandence
on EB with little variance or spread. We can adopt the language of electromagnetic
interactions (deep inelastic or quasielastic scacttering) and say that "scallng"
holds for these cases ({.e., there is only a single geffactive dependent varlable).
The tracking of the n-d doublet scattering length with EB (the Phllllpu/hz/ lina)
and the a-particle binding with Ep (Tjon/la/ line' are vell known examples. Because
we have solved many different two-body and two- plus three-body force models, which
give a wide range of binding energies, wa car. use tilese solutionas to Llnvestliyjate

scaling of observables. That ils, we adopt the philosophy that all of these models

are undauhradiv flawad (n Aaratle hur suanrim mackhanias and canava ! Fmdmiimmn et



NN force may constrain their predictions and give us critical insight. Our many
calculations then will form a kind of "theoretical data set."

A good example of this process is the rmz charge radius. Schematic trinucleons
are depicted below in Figure 1. The protons are shaded. If all NN forces were
identical we would have the equilateral configuration in (la). The rms charge
radlus is the (mean) distance from the trinucleon center-of-mass (CM) to any one of
the protons. Because the pp or nn force is weaker than the np force, the like
particles actually lie further from the CM than the remaining unlike particle.
Qualitatively, the angle 4 in Figure (lb) 1s greater than 60° and the equilateral
configuration (S-state) in (a) becomes isosceles in (b). The deviation of the
isosceles from the equilateral configuration is a measure of the mixed symmetry S'-
state. The geometry clearly indicates that the charge radius of 3He is greater than
that of 3H. This is shown in Figure 2, a "scaling plot" of the rms charge radius
<r2>1/2 versus EB for our theoretical data set. A point Coulomb interaction is
included in the 3He calculations. The data from a Saclay/A3/ analysis are in good
agreement with the simple fits.

(a)

(o) {¢)

Figure 1. Schematic trinucleons with coordinates.
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Figure 2. Scaling plot of rms charge radii calculations with fits and data.

The qualitative behavior can be easily understood. The mean-square radius {s a
matrix element which heavily weights the outer portion of the wavefunction, which
schemacically behaves as exp(-xr), with n-(EB)l/z. Assuning that the entire
wavefunction has this form and performing the quadratures leads to <r2>1/2-Eél/2.
The isoscalar combination of rms radii [(2<r2>He + <r2>H)/3]l/2, does indeed vary in
this fashion, while the difference component, which is largely determined by the S'-
state, decreases more nearly as Esl. .
decrease of the probability of the S’-state, [Ps,-EB ], as a function of binding.

The latter behavior can be traced to the rapid

This trend has a large spread and does not manifest scaling as clearly as the rms
radll./ao/ Although not specifically included on our plot, the Bonn result/zg/
falls on the 3H curve.

/22/

The weak pp Coulomb force produces two competing effects on the He charge
radius. The Coulomb interaction lowers the bindirg snergy and this increases the
radius. In addition the asymptotic form of the vavefunction is changed from a
Hankel funccion (exponential) to a Whittaker function, which falls more rapidly ac
large separations, thus lowering the rms radius. These two effects are scen clearly
in Figure 3.

The Coulomb energy of 3He has long been known to be smaller than the 764 keV
binding energy difference of ‘He and H. The first quantitative demonstration of

/
this was given by Fabre de la Rchlle/A“/ and Fria="**/ . uho derived a simple
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Figure 3. Scaling plot of *He rms charge radius calculations,

with and without a Coulomb interaction.

approximation to the Coulomb energy which allowed experimental electron scattering
data to be used to estimate that energy. The simpleast version of that formula can
be derived from Figure 1. The (point-nucleon) Coulomb potantial in Figure (la) ls
a/x, where a is the fine structure constant. If the trinucleons are primarily in an
equilateral configuration, we can replace x by J3r, which in effect replaces the
two-body correlation function bf the charge density:

E, = <a/®> = (a//i)fd3rpch(r)/r. This simple approximation can be extended to
inciude rixed-symmetry wave function components and the proton’s charge

/

distribution. It can be demonstrated/zz to work at the 1% level by calculating
both sides of the relationship. If experimental data are used for Pop O finds EC
= 638 £ 10 keV. A scaling plot of Ec versus EB' taking account of the proton’s
charge distribution, is shown in Figure 4. It produces Ec = 652 keV at EB - 8.48
MeV. The slightly larger number results from the inability of theoretical wave
functions to reproduce the Lnner portion of pch(r), which leads to a small increase
in EC. The additional 100 keV which i{s needed is due to other direct and indlrect
charge-symmetry-breaking mechanisms.

Another {mportant set of observables are the asymptotic normalization

/29,&6/. If one stretches the triton until a deuteron is outside the force

constants
range of the remaining neutron, the wave function becomes proportional to an

exponential (~exp(-By)), where y is the relativa coordinate of the two systems and 3

- - - . - .. a s as mm N -
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Figure 4. Scaling plot of 3He Coulomb e:ergy.

proportionality constant is the asymptotic normalization. Because of the NN tensor
force, there are actually 2 constants, one for s-wave (Cs) and one for d-wave (CD).
and thelr ratio, n = CD/CS. There has been considerable recent interest in these
constants for the analogous deute-on problem/al/. Because the wave number S8
increases as triton binding increases, the asymptotic wave function becomes steeper
and probability decreasec in the exterior region. It becomes easier for the
asymptotic wave function to match smoothly onto the interior portion if the
asymptotic normalization constant increases as the binding increases. Each constant
(CS, CD and n) increases with energy, as fllustrated by n in Figure 5. Both *H and
3He (with a Coulomb interaction) are shown together with data.

The scattering of a nucleon from a deuteron at very low energies leads to two
scattering lengths: doublet (az) and quartet (aa). The latter (s not very
{interesting, being primarily sensitive to the deuteron binding energy. The former,
however, reflects the underlying dynamics of the triton, but perhaps in a trivial
uay/a7/. Figure 6 shows the results of n-d and p-d doublet scattering length
calculatlons at Los Alamos/aa/ for a variety of realistic and unreallstic two-bodvy
and three-body force models, plotted versus the corresponding *H or 3He binding
energy. The n-d case scales according to the "Phillips line" and passes through 'he

datun. The p-d case does not and is controversial because of the exiscence of
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extremely weak long-range polarization forces (—-l/r4 + ...), which nevertheless
affect the definition of the scattering length. Recently it has been shown that a
proper treatment of cthese long-rarge forces, should produce a negligible change in
82' altnough some care needs to be exercised/hg‘so/. There {s still an unresolved
discrepancy between rthe results of Refs. 48 and 51, and those of Ref. 52.

Our final topic concerns the charge densities of vhe trinucleons, 3He and 3H.
Our community has long awaited the 3H experiments, recantly completed at Saclay/ai/

/53/. Figure 7 depicts the peint-nucleon 3He charge density calcula:ed/sa/

and Bates
for the RSC two-nucleon interaction and different three-body forces (TBRF). None of
the results reproduce the "hole” in the quasi-experimental data, where the effect of
the nuc.eon’'s charge form factor has been removed. Figure 8 shows the analogous 3H
calculation. The threa-nucleon forces show a tendency to produce a hole in the
interior of pch(r). but it is inadequate. The hole reflects ti:a failure of the
calculations to reproduce the value (and position) of the secondary maximur in the
charge form fac:or)a3;lgure 9 displays the 3H form factors for the same cases,

together with data Among the explanations proposed for this discrepancy are

relactivistic corrections and meson-exchange currents.

SUMMARY

There has been much progress in our understanding of 3He and 3H recently.
Faddeev calculations of high accuracy are now possible for binding energies and
other observables. This has led in somu cases to both quantitative and qualitative
descriptions. We still have an incomplete knowledge of the triton binding ac the
level of roughly 1 MeV.

126 rl 1] v L} ' 1] r ) L ' ¥ v 1 L} ' T t 1 . ' r 1 b ] ] ' 1 1] ] v
NO 3-body force

T™ 3-body force
BR 3-body force
UA 3-body force
Experimental

|

a ko

0 t.n T R T T U R R S S U TSRS I S BT e o o o
0 06 1 16 2 25 3
r (fm)

Figure /. RSC 'Ha charge densities for various TBF models. with data




125 [« e e
NO 3-body force

T™ 3-body force

\\\ BR 3-t=2; force
\ UA 3-body force

Y
g

-3)

o
&

penlt) (fm

o
3

PP B W WD U e .

P

9
0L.AllllllllllllllltlllLJ,AllL;.,

0 05 ! 15 2 28 3
r (fm)

Figure 8. RSC 3H charge densities for various TBF models.

Oo LA R R L L A A A B e AL | T YTrTY vYop oy v oy
- NO 3-body force
S
- T™ 3-body force
0 F BR 3-body force
C UA 3-body force
nig 0' .
SOOE
]
o'k
O‘L-nnnnlatnnl‘n Altlllltllllltj

0 5 10 18 20 26 30
Q im?

Flgure 9. RSC 'H charge form factors for various TBF models K with data



REFERENCES

1. C. T. Munger and H. Gould, Phys. Rev. Lett. 57, 2927 (1986).

2. J. L. Friar, B. F. Gibson, and G. L. Payne, Ann. Rev. Nucl. Part. Sei. 34, 403
(1984)

3. J. Carlson, LA-UR-87-1372, Los Alamos Preprint.

4, Y. Akaishi, Few-Body Systems (Suppl. 1), 170 (1986); Lecture Notes in Physics
273, 324 (1987).

5. R. B. Wiringa, Few-Body Svstems (Suppl. 1), 130 (1986).

6. C. Clofi degli Atti and S. Simula, Nuovo Cim. 41, 101 (1984).

7. K. E. Schmidt, Lecture Notes in Physics 273, 363 (1937).

8. Yu. A. Simonov, Yad. Fiz. 23, 630 (1966).

9, M. Fabre de la Ripelle, Lecture Notes in Physics 273, 283 (1987).

10. M. H. Kalos, Phys. Rev. 128, 1891 (1962).

11. L. D. Faddeev, Zh. Eksp. Teor. riz. 39, 1459 (1960).

12. 4, L. Payne, Lecture Notes in Physics 273, 64 (1987).

13. W. Glockle, Lecture Notes in Physics 273, 3 (1987).

14, J. A. Tjon, Phys. Lett. 26B, 217 (1975); Phys. Rev. Lect., 40, 1239 (1 78).

15. R. B. Wiringa, R. A. Smith, and T. A. Ainsworth, Phys. Rev. C29, 1207 (1984).

16. C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C3l, 2266
(1985); C33, 1740 (1986).

17. C. Hajduk and P. U. Sauer, Nucl. Phys. A369, 321 (1981).

18. S. Ishikawa and T. Sasakawa, Few-Body Systems 1, 143 (1986 1, 3 (1986).

19. R. A. Malfliet and J. A. Tjon, Nucl. Phys. Al27, 161 (1969» Ann. Phys. (N.Y.)
61, 425 (1970).

20. J. Torre and B. Goulard, Phys. Rev. C28, 529 (1981).

21. A. A. Kvitsinski{, er al., Flz. Elem. Chastits At. Yadra 1. 67 (1986).

22. J. L. Friar, B. F. Glbson, and C. L. Payne, Phys. Rev. C3}5. 1302 (1967).

23. J. L, Friar, B. F. Gibson, and G L. Payne, LA-UR-8/-1233, Los Alamos Preprint.

24. R. V, Reid, Ann. Phys. (N.Y.) 30, 411 (1968).

25. R. de Tourreil and D. W. L. Sprung, Nucl. Phys. A201. 193 (14/3),

26, R. de Tourreil, B. Rouben, and D. W. L. Sprung, Nucl. Phys. 3242, 4.5 (19/5)

27. M. Lacombe, et al., Phys. Rev, C2l, 861 (1980); DL2, 1495 (1979).

28. R. Machleildt, K. Yolinde, and C. Elstaer, Phys. Repts. 149, 1 (1987).

29. T. Savakawa, Nucl. Phys. A463, 327c (1987).

30. R. A. Brandenhurg, et al., [LA-UR-86-3700, Los Alamos Prepri

31. J. Haidenbauer and Y. Kolke, Phys. Rev. C34, 118/ (1986).

32. M. M. Nagels, T. A. RiJken and J. J. de Swart, Phvs. Rev. D! , 768 (197R)

33, S. A. Coon and J. L. Friar, Phys. Rev. CJ4, 1060 (1986).

4. J. L. Friar, B. F. Gibaon, and G. L. Payne, LA-UR-8/-115), [ne Alamos Preprin

5. J. A. Tjon, Nuci. Phys. A46], 157c¢ (1987).

16. S. A. Coon, et al., Nucl. Phys. AdLl7, 242 (1979).

7. H. T. Coelho, T. K. Das, and M. R. Robilotta, Phys Rev. C28, 1812 (198

L4



38.
39.
40,

47,
48,

49.
50.
51.
52.
53.
54.

1>

C. Hajduk, P. U. Sauer, and W. Streuve, Nucl. Phys. A4Q3, 581 (1983).

B. M. Axlilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).

J. L. Friar, B. F. Gibson, C. R. Chen, and G. L. Payne, Phys. Lett. 161B, 241
(1985).

T E. O. Ericson and M. Rosa-Clot, Ann. Rev. Nucl. Part. Scl. 33, 271 (1985).
A. C. Phillips, Rep. Prog. Phys. 40, 905 (1977).

F.-P. Juster, et al., Phys. Rev. Lett. 55, 2261 (1985).

M. Fabre de la Ripelle, Fizika 4, 1 (1972).

J. L. Friar, Nucl. Phys. AlJ6, 43 (1970).

J. L. Friar, B. F. Gibson, D. R. Lehman, and G. L. Payne, Phys. Rev. C235, 1616
(1982).

V. Efimov and E. G. Tkachenko, Phys. Lett. 157B, 108 (1985).

C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C33, 40l
(1986).

Gy. Bencze et al., Phys. Rev. C33. 1188 (1987).

A. I. L'vov, Preprint 14, Moscow, FIAN (1987;.

G. H. Berthold and H. Zankel, Phys. Rev. C 34, 1203 (1986).

A. A. Kvitsinskil, Pis’'ma Zh. Ekup. Teor. Fiz. 16, 375 (1982).

D. Beck, MIT Ph.D. Thesis (1986).

J. L. Friar, B. F. Gibson, G, L. Payna, and C.R. Chen, Phys. Rev. C34, 1463
(1986).



